
Minimum variance threshold for 𝜖-lexicase selection
Guilherme Seidyo Imai Aldeia

Federal University of ABC
Santo Andre, São Paulo, Brazil
guilherme.aldeia@ufabc.edu.br

Fabrício Olivetti de França
Federal University of ABC

Santo Andre, São Paulo, Brazil
folivetti@ufabc.edu.br

William G. La Cava
Boston Children’s Hospital
Harvard Medical School

Boston, Massachusetts, USA
william.lacava@childrens.harvard.edu

ABSTRACT
Parent selection plays an important role in evolutionary algorithms,
and many strategies exist to select the parent pool before breeding
the next generation. Methods often rely on average error over the
entire dataset as a criterion to select the parents, which can lead
to an information loss due to aggregation of all test cases. Under
𝜖-lexicase selection, the population goes to a selection pool that
is iteratively reduced by using each test individually, discarding
individuals with an error higher than the elite error plus the median
absolute deviation (MAD) of errors for that particular test case. In
an attempt to better capture differences in performance of indi-
viduals on cases, we propose a new criteria that splits errors into
two partitions that minimize the total variance within partitions.
Our method was embedded into the FEAT symbolic regression al-
gorithm, and evaluated with the SRBench framework, containing
122 black-box synthetic and real-world regression problems. The
empirical results show a better performance of our approach com-
pared to traditional 𝜖-lexicase selection in the real-world datasets
while showing equivalent performance on the synthetic dataset.

CCS CONCEPTS
• Theory of computation→ Evolutionary algorithms; • Com-
puting methodologies→ Genetic programming; Supervised
learning by regression.

KEYWORDS
lexicase selection, minimum variance, genetic programming

1 INTRODUCTION
Genetic Programming (GP) [15] is a meta-heuristic created to evolve
computer programs to solve a particular problem, inspired by a
weak metaphor of the biological evolutionary process. One ap-
plication that is particularly suited for GP is symbolic regression
(SR) [14, 18], a supervised learning method that searches for a func-
tion in the parametric family of functions and the optimal parameter
that best fits a set of observed examples. Given a set of 𝑑 inputs of
dimension x ∈ R𝑛 and respective target values {x𝑖 , 𝑦𝑖 }𝑑𝑖=1 = (X, y),
SR optimizes both the structure and parameters of a model, 𝑓 (X, 𝜃).

An essential aspect of any evolutionary algorithm is the selec-
tion of solutions that will be recombined to generate new offspring
solutions. The main goal of the recombination operator is to com-
bine different parts of highly fit parents with the expectation that
the offspring will improve upon its parents. As such, this selection
requires that the parents perform well at different dataset examples.
Traditional approaches such as tournament selection [3, 22] only
use the aggregated information the fitness function provides to
decide which parents will reproduce. As such, it can choose parents

that perform well on average across the whole dataset while miss-
ing individuals that perform well on difficult subsets of the problem.
Unsurprisingly, evidence shows that parent selection with the en-
tire data ignores relevant cases, as less information is available
[16].

An alternative approach is to make the selection by distinguish-
ing between the individuals by rewarding those who excel in dif-
ficult subsets of test cases. This is the idea behind the lexicase
selection [25], which has shown state-of-the-art performance in
program synthesis and symbolic regression [6]. It is based on the
assumption that problem modularity is identifiable to some degree
by its individual fitness cases, each representing a circumstance in
which the program must do well. To select one parent, the entire
population goes into a selection pool. Then, a random test case is
selected, and individuals who fail that test are eliminated from the
pool. Randomly selecting the following test case is repeated until
the pool contains only one individual. If the procedure runs out
of test cases, a random individual from the pool is returned with
uniform probability.

While the original lexicase is suitable for binary cases (correct or
incorrect test cases), it required modifications to handle continuous
values in the SR context by defining a threshold 𝜖 [20]. This has
shown to be effective for regression compared to other selection
techniques. For each test case, a threshold is established based on
the median absolute deviation of errors, and any individual within
the tolerance remains in the pool.

This paper proposes a new way of estimating 𝜖 by replacing the
median absolute deviationwith a threshold that splits the errors into
two partitions, such that the total sum of variance for the partitions
is minimized. This proposed threshold criterion corresponds to
a type of information entropy, used commonly by decision tree
methods [2]. By minimizing the number of different individuals on
either side, it behaves as a 1-dimensional clustering. This represents
a way of picking the individuals that remain in the pool that is more
sensitive to similarities in performance among the pool.

We evaluate the proposed method by implementing it into FEAT
[19], a symbolic regression framework that has been previously
evaluated with 𝜖-lexicase selection [18] and successfully applied to
real-world problem [21]. Our experiments are twofold: first, with 6
low-dimensional datasets, we provide an in-depth analysis of its
performance characteristics during the evolution. Subsequently,
we rigorously assessed the proposed selection process utilizing the
SRBench [18], a unified framework designed to perform a relative
performance evaluation of symbolic regression algorithms.

Our empirical findings show that our method presents a superior
performance in terms of𝑅2 while keeping solutions within the same
level of complexity when compared to the 𝜖-lexicase selection. In

ar
X

iv
:2

40
4.

05
90

9v
1

 [
cs

.N
E

]
 8

 A
pr

 2
02

4

https://orcid.org/0002-0102-4958
https://orcid.org/0000-0002-2741-8736
https://orcid.org/0000-0002-1332-2960

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

SRBench, our method improved the FEAT algorithm in real-world
problems and was still capable of increasing its ranking.

The remainder of the paper is organized as follows. §3 details our
proposed modification by replacing the median absolute deviation
with a more effective threshold optimization strategy. §4 presents
the symbolic regression framework used in the experiments. §5 out-
lines experimental design, datasets, and evaluation criteria. Results
and discussion are presented in §6 offering a comparative analysis
of our approach against 𝜖-lexicase. Finally, §7 summarizes findings,
discusses implications, and suggests future avenues for research in
evolutionary algorithms and parent selection methodologies.

2 𝜖-LEXICASE SELECTION

Let us define a test case as a pair (x𝑖 , 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑑 from
the data split used during fitness evaluation. We denote 𝑡 ∈ T any
possible test case. The error of an individual 𝑛, denoted as 𝑒𝑡 (𝑛), is
the absolute difference between its predicted value given x𝑡 and the
target value𝑦𝑡 . The vector of errors for a test case 𝑡 , denoted as e𝑡 , is
the concatenation of errors for all individuals from the set. The set
N denotes the population, and the set S denotes the selection pool.
Initially, La Cava et al. [20] proposed using a threshold in lexicase
to handle continuous values. The method was further studied by
them in later work [17], from which different implementations of
𝜖-lexicase were proposed: static, semi-dynamic, and dynamic.

In the static scenario, the criteria to stay in the pool uses 𝑒∗𝑡 + 𝜖 ,
where 𝑒∗𝑡 is the best error from the population to that case. In semi-
dynamic and dynamic implementations, the threshold to stay in
the pool is calculated as the error of the elite (smallest error from
the pool) plus 𝜖 . The difference between the semi-dynamic and the
dynamic is that the former calculates 𝜖 over the entire population,
while the latter calculates it for the pool. In any case, 𝜖 is calculated
as the median absolute deviation (MAD) [23]:

𝜖𝑡 = 𝜆(e𝑡) = median(|e𝑡 −median(e𝑡) |). (1)

The MAD produces median-centered random variables with
more robustness than standard deviation, as the median is more
representative of the center than the mean in asymmetrical distri-
butions [23]. The interpretation of the MAD as a criterion in the
𝜖-lexicase context is a dispersion measured from the center of the
distribution.

3 MINIMUM VARIANCE THRESHOLD

In this paper, we propose the Minimum Variance Threshold
(MVT) to replace MAD as a selection criteria for the static and
dynamic 𝜖-lexicase algorithms. The MVT split the errors into two
clusters, reducing the pool of individuals to those below the spe-
cific threshold. This criterion is inspired by regression trees [2].
Essentially, the parent selection method changes the selection dis-
tribution to specific cases, and we hypothesize that performing the
selection based on clustering good and bad performing individuals
can improve the overall performance of 𝜖-lexicase selection.

In each step of MVT lexicase, the threshold 𝜏∗ for staying in the
pool is such that the sum of the variance of the errors in the pool on

either side of the threshold is minimized. To estimate the threshold
𝜏∗, we calculate:

𝜏∗ = min
min(e𝑡)<𝜏<max(e𝑡)

(
Var(l)
|l| +

Var(r)
|r|

)
, (2)

where l = [𝑒𝑡 : e𝑡 |𝑒𝑡 < 𝜏] and r = [𝑒𝑡 : e𝑡 |𝑒𝑡 ≥ 𝜏] are the left-sided
and right-sided partition, respectively.

The procedure is to search for a value that splits the errors by
clustering them into one group with smaller error values (left) and
one with greater error values (right). Figure 1 illustrates this process.
Every time we perform a split, the remaining pool represents all
individuals who consistently performed better in the error cases
(that is, on the left side of the split). We see this process as a more
intuitive way of splitting the pool.

Remain in the pool

Error

case #1

case #2

case #3

Figure 1: Process of consecutively splitting the pool of indi-
viduals into two clusters based on their error (𝑥 axis). The
process consists of randomly picking a test case, estimating
𝜏∗ by solving Eq. 2, and removing individuals with errors
higher than the pool threshold. This is repeated until only
one individual remains in the pool, or all training data was
already used as singular test cases — returning one random
individual from the remaining pool.

4 FEATURE ENGINEERING AUTOMATION
TOOL

The Feature Engineering Automation Tool (FEAT) was proposed
in [19] as an application of symbolic regression and was previously
benchmarked in SRBench with good results [18]. The idea is to
evolve a set of trees used as features in another machine learning
(ML)model.We used FEAT as our SR framework to evaluate our pro-
posed method. Our choice is motivated by semi-dynamic 𝜖-lexicase
being the default selection method and, additionally, because the
model was studied in previous works with different lexicase meth-
ods [19], also successfully applied to clinical decision modeling
[21].

The algorithm follows the standard steps of an evolutionary al-
gorithm, with some specific particularities besides the 𝜖-lexicase
selection. First, it performs a multi-objective optimization, minimiz-
ing both the fitness and complexity of models. Second, it represents
individuals as a collection of symbolic regression trees. Third, it
uses a backpropagation algorithm to optimize the parameters of

Minimum variance threshold for 𝜖-lexicase selection

Table 1: Comparison of 𝜖-lexicase variations.

Strategy Pool Criteria Characteristic

Static pop (N) 𝑒∗𝑡 + 𝜖𝑡
The error vector is calculated previously with entire population. A binary mask
matrix stores the global criteria to iterate through the random cases

Semi-dynamic pop (N) elite + 𝜖𝑡 ,
where 𝜖 ← 𝜆(e𝑡) for 𝑡 ∈ T

The error vector is calculated previously, but the decision criteria is based on the
individuals that are in the pool, as it uses the elite error in the criteria

Dynamic pool (S) elite + 𝜖𝑡 ,
where 𝜖 ← 𝜆(e𝑡 (S))

Criteria is dependent of the elite, and 𝜆 is calculated with the selection pool

the models. While the selection is made with 𝜖-lexicase, survival
of the population is done using the non-dominated sorting genetic
algorithm (NSGA2) [5].

Each individual is the combination of 𝜙0, 𝜙1, . . . , 𝜙𝑚 expression
trees representing one new feature. These features are used as
inputs for any machine learning model (using a linear regression
with 𝑙2 regularization [11] by default). Figure 2 illustrates a possible
individual.

Figure 2: An individual in FEAT is a collection of symbolic
regression trees as meta-features for any machine learning
model.

The evolutionary loop of FEAT performs the evolution of a pop-
ulation of individuals as an application of evolutionary comput-
ing for feature engineering. The fitness of an individual is calcu-
lated by taking an ML model 𝑓 and training it with the collec-
tion of features corresponding to that individual, then evaluating
the mean squared error between the predictions of the ML model
ŷ = 𝑓 ([𝜙0, 𝜙1, . . . , 𝜙𝑚]) and observed values y:

MSE(ŷ, y) = 1
𝑑

𝑑∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 . (3)

The complexity of a model is defined recursively for a node
𝑛 with 𝑘 arguments as the combination of the complexity of its
children with the complexity of the node itself:

𝐶 (𝑛) = 𝑐𝑛 ∗ (
𝑘∑︁

𝑎=1
𝐶 (𝑎)). (4)

The complexity of an individual is the sum of the complexity
for each feature 𝜙 it contains, and the model size is the number of
nodes for each feature 𝜙 . The complexity of each feature increases
exponentially as the depth increases but tends to reach higher
values if deeper nodes are more complex. This way, the occurrence

of complicated operators is discouraged, and we focus on more
interpretable models.

Crossover and mutation are implemented as follows. Crossover
can either swap two subtrees between two individuals or swap
two features (whole trees). For mutations, the algorithm uses point,
insert, and delete mutations (randomly replace, insert, or delete one
node, respectively, as well as insert/delete dimension, that creates
or removes a new tree representing a dimension.

FEAT implements two mechanisms to split the training data
further. The first, called validation split, internally separates the
training data into two partitions: one for fitting the parameters and
evaluating themodel and validation data for logging and picking the
final individual from the last population. The second, called batch
learning, generates a random batch from the inner training partition
to perform the fit and can be used to implement the downsampling
strategy proposed in [8].

Mainly related to lexicase, previous work showed that down-
sampling the test cases can achieve similar or better performance
[1, 9, 10], and 𝜖-lexicase was also shown to hold these benefits [8].

5 METHODS

Our experiments are twofold. First, we evaluate the FEAT algo-
rithm with our proposed parent selection schema with 30 runs for
6 datasets. For the first set of experiments, we focus on performing
longer runs and obtaining a larger sample size to calculate statistics
and perform an in-depth analysis. We changed the NSGA2 sur-
vival step by replacing the original population with the offspring
to isolate the effect of parenting selection, as NSGA2 is an elitist
algorithm. The batch size was also turned off to assess the number
of test cases each variation performed.

After the first batch of experiments, we evaluate it through a
rigorous benchmark of symbolic regression algorithms known as
SRBench [18], containing 122 black-box regression problems, taken
from the Penn Machine Learning Benchmarks (PMLB) [24], which
include the Friedman problems [7] (62 datasets). The Friedman
contains synthetic problems designed to be tricky to solve by re-
gression models, while the rest of the datasets contain real-world
data. For the SRBench, we performed 10 runs for each dataset, as
specified by the benchmark. We kept every hyper-parameter to
correspond to the benchmark settings, allowing us to compare our
results with the latest published result.

Regardless of whether it was from the first or second batch of
experiments, every run was done by splitting the data into train

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

and test partitions in a ratio of .75/.25. Table 2 and Figure 3 show
the dimensionality of each dataset used in the experiments.

Table 2: Dimensionality of the six datasets used to perform
an in-depth analysis.

Dataset # samples # features
airfoil 1503 5
concrete 1030 8
energy cooling 768 8
energy heating 768 8
Housing 506 13
Tower 3135 25

102 103 104 105 106

No. of Samples

101

102

103

No
. o

f F
ea

tu
re

s

Non-Friedman
Friedman

Figure 3: Dimensionality of the SRBench datasets.

Table 3 shows the hyper-parameter configuration used in the
SRBench experiment, with values in parenthesis showing the set-
tings used in the first 6 datasets. The batch size was selected after
reading the results obtained from the first batch of experiments.
The complexity for each operator specified in the hyper-parameter
is depicted in Table 4, reminding the reader that these values are
pre-defined by the FEAT package authors.

Original FEAT implementation is available at https://github.com/
cavalab/feat. FEAT with the MVT selection is available at https:
//github.com/gAldeia/feat. All data and the source code for imple-
mentations, experiments, and post-processing analysis are available
at https://github.com/gAldeia/srbench/tree/feat_split_benchmark.

6 RESULTS AND DISCUSSION

We divide this section into three parts. First, we analyze the
convergence aspects of the different 𝜖-lexicase algorithms, focusing
on how they affect the search convergence and the number of test
cases they use. Then, we benchmark the proposed method with
the SRBench framework, which consists of 23 machine learning
methods (originally 21 plus our 2 proposed algorithms), of which 16
(14 plus ours) are symbolic regression algorithms. Finally, we also
use the SRBench to asses how the proposed method scales with the
number of features and number of samples of the dataset.

As for naming, FEAT(𝜖-lex) stands for the standard FEAT with
default 𝜖-lexicase selection. D-Split and S-Split are our dynamic
and static methods of estimating the threshold using FEAT.

Table 3: FEAT hyper-parameters shared between all evalu-
ated variations. Values in parenthesis indicates a configura-
tion used just with the 6 datasets.

Parameter Value

objectives ["fitness","complexity"]
pop_size 100
gens 100 (350)
cross_rate 0.5
ml Linear ridge regression
max_depth 6 (3)
backprop True
iters 10
validation split 0.25
selection NSGA2 (offspring)
batch_size 200 (unlimited)
functions [+,−,∗, ·· ,(·)

2,(·)3,√·,sin,cos,𝑒 (·) ,log]

Table 4: Complexity of each operator

Complexity Operators

1 +, −
2 ·

· , ∗, (·)
2, √·

3 cos, sin, (·)3
4 𝑒 (·) , log

6.1 Behavior during the run
Figure 4 reports the minimum loss on the validation split for each
dataset. Figure 5 reports the median number of test cases used to
select the parent pool for each generation.

The D-Split shows a better convergence curve in two datasets
(Airfoil and Energy Cooling) than other approaches, supporting
the idea that the MVT can change the convergence curves. S-Split
shows the worst convergence curve for all datasets. In some cases,
such as in Concrete, Energy Cooling, and Tower datasets, it seems
to reach a plateau with a higher error rate.

When looking at the number of test cases used in each generation,
we notice that for all the datasets, the original 𝜖-lexicase requires a
smaller number of cases, implying a faster execution time (as wewill
discuss later). Both D-Split and S-Split used more test cases, with
S-Split using twice as many test cases as D-Split. This implies that
many test cases have large clusters of good-performing individuals
that would be ignored in the selection using the MAD, but with
the MVT, they are kept in the pool for longer. We believe that this
creates a more robust selection; thus, we have improvements over
the original FEAT with the MAD threshold.

We believe that clustering the whole population can lead to
high thresholds and a less effective selection pool, and the S-Split
could be improved by implementing a down-sampling strategy
that selects a subset of test cases where it is more likely to have
significant differences between the individuals [1]. The D-split —
which uses the pool to calculate the threshold— yielded a better

https://github.com/cavalab/feat
https://github.com/cavalab/feat
https://github.com/gAldeia/feat
https://github.com/gAldeia/feat
https://github.com/gAldeia/srbench/tree/feat_split_benchmark

Minimum variance threshold for 𝜖-lexicase selection

0 100 200 300

101

2 × 101

m
in

_lo
ss

_v
al

Airfoil
model
S-Split
D-Split
FEAT(e-lex)

0 100 200 300

4 × 101

5 × 101

6 × 101

7 × 101

8 × 101
Concrete

0 100 200 300

3 × 100

4 × 100

5 × 100

m
in

_lo
ss

_v
al

Energy Cooling

0 100 200 300

100

Energy Heating

0 100 200 300
generation

1.2 × 101

1.4 × 101

1.6 × 101

1.8 × 101

2 × 101

2.2 × 101

m
in

_lo
ss

_v
al

Housing

0 100 200 300
generation

10−1

Tower

Figure 4: Convergence loss of the best individual on valida-
tion partition for the six problems.

performance because the pool shrinks, removing individuals with
a subpar overall goodness-of-fit and getting more stable results.

6.2 Performance on small datasets
To assess the final performance for the first 6 datasets, we report
in Figure 6 the median 𝑅2 ranking for each random seed used in
the experiments, and in Figure 7, we show the size and complexity
of the final models. We also included a critical differences diagram
[12], showing each algorithm’s median ranking, with horizontal
lines connecting them when no statistical significance is observed
from the samples.

Looking at the 𝑅2 rank (Figure 6a) we see S-Split as the worse
variant, with 3 asterisks indicating p-value ≤ 1 × 10−3. The criti-
cal differences (6c) shows that D-Split is mainly classified as first
among the other variants. When looking at the grouped 𝑅2 for all
datasets (Figure 6b), there is no statistical difference, but 75% of
the distribution of the D-Split is above the median for the original
𝜖-lexicase. The worst performance is from the S-Split, with a large
spread between [0.3, 0.8].

0 100 200 300

101

102

103

m
ed

_t
es

ts
_u

se
d

Airfoil
model
S-Split
D-Split
FEAT(e-lex)

0 100 200 300

101

102

Concrete

0 100 200 300

101

102

m
ed

_t
es

ts
_u

se
d

Energy Cooling

0 100 200 300

101

102

Energy Heating

0 100 200 300
generation

101

102

m
ed

_t
es

ts
_u

se
d

Housing

0 100 200 300
generation

101

102

103

Tower

Figure 5: Median number of test cases used to pick each par-
ent for the six problems.

The worst performance of S-Split shows a better trade-off in
terms of size and complexity (Figures 7a and 7b). The critical dif-
ferences diagram shows that, while S-Split is the best algorithm in
size and complexity, the other two variants, D-Split and 𝜖-lexicase,
have no statistical difference.

6.3 Benchmarking with SRBench
The SRBench framework comprises several machine learning mod-
els, some of which are symbolic regression algorithms, meaning
they could benefit from our proposed lexicase selection. We notice
that, from the last published analysis of state-of-the-art symbolic
regression methods, FEAT was one of the best-performing algo-
rithms, originally ranked at 3 in terms of the root of 𝑅2 on test
partition, behind Operon [13] and SBP-GP [26]. Figure 8 reports the
latest available results from SRBench, combined with our results of
running our two variations, FEAT S-Split and FEAT D-Split, over
the benchmark problems.

The FEAT D-Split outperforms the original FEAT by a modest
difference, showing approximately similar RMSE, 𝑅2, and model

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

S-Split D-Split FEAT(e-lex)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ed

ia
n
R

2 r
an

ks ns

(a) Median 𝑅2 rank

S-Split D-Split FEAT(e-lex)
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sc
or

e
(N

or
m

al
ize

d
R

2)

ns
ns

(b) 𝑅2 score

123

2.61S-Split
1.83FEAT(e-lex)

1.56 D-Split

(c) 𝑅2 critical difference diagram

Figure 6: Grouped 𝑅2 results for the 6 datasets.

S-Split D-Split FEAT(e-lex)

102

Si
ze

 (#
 n

od
es

)

ns

(a) Sizes

S-Split D-Split FEAT(e-lex)

25

50

75

100

125

150

175

200

Co
m
pl
ex
ity

ns

(b) Complexites

123

2.16D-Split
2.13FEAT(e-lex)

1.72 S-Split

(c) Complexity critical difference diagram

Figure 7: Grouped complexity results for the 6 datasets.

size. FEAT S-Split performs worse than the other two variations
of FEAT but still ranks 9th, outperforming more than half of the
methods.

As pointed out in [4], the aggregated result of SRBench can mask
the difference among the top algorithms. A division of the bench-
marks into Friedman and non-Friedman datasets (roughly half and

half of the datasets) revealed that the best-ranked algorithms had
a noticeable difference on the Friedman benchmarks. At the same
time, they all behaved similarly in the non-Friedman sets. Following
[4], we report in Figure 9 the percentage of times that each of the
algorithms was ranked top 5 for the Friedman synthetic problems,
and Figure 10 reports the percentage each algorithm was ranked
top 1 in the real-world, non-Friedman problems. This represents a
relative goodness-of-fit performance when pairing each instance
of results, and higher values are better. We did not report the top
1 percentage for Friedman datasets because no FEAT variation
reached more than 4% of wins, implying that these problems are
still challenging for FEAT.

While FEAT achieves a rank of 5 or less approximately 53% of
the time, our proposed method, FEAT D-Split, can increase this
percentage to over 60%. FEAT with S-Split selection is among the
top 5 algorithms in less than 10% of the runs. The D-Split performs
better than the other variants, with a total of 10% of wins among
the other algorithms. This represents a significant improvement,
as the original FEAT performs poorly in this set of problems. We
also noticed that S-Split performed better for the non-Friedman
datasets than the original FEAT. Given that S-Split was better at
finding models with smaller size and complexity, this implies that it
found solutions with a better trade-off between 𝑅2 and complexity.

Overall, these histograms show that FEAT D-Split increased
its rank in the Friedman benchmarks by a small margin, but as
already noticed, not enough to be among the top-1 ranks. D-Split
and S-Split significantly increase solutions at the top-1, with D-Split
ranking in the top-3 algorithms for the non-Friedman benchmarks.
Again, as noted in [4], the non-Friedman median 𝑅2 does not have
much influence on the overall rank. Thus, we could not observe
much difference in Fig.8. Notice that this plot discretizes the results
presented in the previous plots. The fact that it was not ranked first
in a particular instance does not imply that the returned result is
not close to the best result. This is better highlighted on the error
bar plots.

Finally, we plot the rank for model size and 𝑅2 for all algorithms
in SRBench in Figure 11. For both model size and 𝑅2, smaller values
are better. The lines in the plot represent the Pareto fronts for each
rank.

We can see that all variations are within the same Pareto front
rank, with different levels of trade-off between model size and
accuracy. While showing equivalent performance in the synthetic
benchmarks, we saw that the lexicase selection achieved a better
result in real-world problems.

6.4 Scalability
By plotting the execution time versus number of samples or fea-
tures for the datasets in SRBench, we can visualize how different
implementations scale. We re-run the entire FEAT algorithm with
SRBench datasets to remove hardware-related differences. Figure
12 reports the training time for different numbers of features in
the dataset, and Figure 13 reports the training time for different
numbers of samples. We did not compare execution time for other
models as they are hardware-dependent. Thus, we could get a biased
estimate of performance.

Minimum variance threshold for 𝜖-lexicase selection

−0.25 0.00 0.25 0.50 0.75 1.00

*Operon
*SBP-GP

*FEAT D-Split
*FEAT

*EPLEX
XGB

LGBM
*GP-GOMEA

*FEAT S-Split
AdaBoost

RandomForest
*ITEA

*AFP_FE
*AFP
*FFX

KernelRidge
*DSR

*MRGP
*gplearn

MLP
Linear
*BSR

*AIFeynman

R2 Test

0.5 1.0 1.5 2.0

Rmse Test

102 104

Model Size

Figure 8: Comparison of our proposed algorithms with SRBench results. Names with an asterisk indicate that the model is a
symbolic regression algorithm. Bars show the 95% confidence interval. Size comparisons are made by the number of nodes to
keep models comparable.

*A
FP

*A
FP

_F
E

*A
IFe

yn
m

an
*B

SR
*D

SR
Lin

ea
r

*g
pl

ea
rn

*M
RG

P
Ra

nd
om

Fo
re

st
M

LP
Ad

aB
oo

st
Ke

rn
el

Ri
dg

e
*IT

EA
*F

EA
T

S-
Sp

lit
*G

P-
GO

M
EA XG
B

LG
BM *F
FX

*E
PL

EX
*F

EA
T

*F
EA

T
D-

Sp
lit

*S
BP

-G
P

*O
pe

ro
n

Algorithm

0

20

40

60

80

100

%

Frequency ranked 5 or less in Friedman datasets

Figure 9: Number of times each algorithm was ranked top 5
or less for each run for the Friedman datasets.

All three variants of FEAT with different parent selections have
similar curves but different offsets. The results imply that scalability
is not correlated with the number of features but with the number
of samples. This may be explained because it increases the number
of test cases, and our MVT selection uses a higher number of test
cases than the original 𝜖 -lexicase.

As for the number of features, the size of the individuals is
limited by the maximum size of symbolic regression trees, and, as

*A
FP

*G
P-

GO
M

EA
*B

SR
*F

EA
T

Ad
aB

oo
st

*IT
EA

*A
FP

_F
E

*E
PL

EX
*A

IFe
yn

m
an

*D
SR M
LP

*S
BP

-G
P

*F
FX

*F
EA

T
S-

Sp
lit

*M
RG

P
*g

pl
ea

rn
LG

BM
Ke

rn
el

Ri
dg

e
Ra

nd
om

Fo
re

st
Lin

ea
r

*F
EA

T
D-

Sp
lit

*O
pe

ro
n

XG
B

algorithm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

%

Frequency ranked 1 in non-Friedman datasets

Figure 10: Number of times each algorithm was ranked top 1
or less for each run for the non-Friedman datasets.

with many symbolic regression algorithms, they have to perform
the feature selection implicitly due to size constraints. While the
number of features does not impact training time, the maximum
expression sizes do. However, we achieved a good performance on
SRBench with relatively small models, showing no need to increase
the maximum allowed size of the models and implying FEAT could
perform well training with the current settings.

Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França, and William G. La Cava

0 5 10 15 20
R2 Test Rank

0

5

10

15

20

M
od

el
 S

ize
 R

an
k

AFP*
AFP_FE*

AIFeynman*

AdaBoost

BSR*

DSR*

EPLEX*

FEAT D-Split*
FEAT S-Split*

FEAT*

FFX*

GP-GOMEA*

ITEA*
KernelRidge

LGBM

Linear

MLP

MRGP*

Operon*

RandomForest

SBP-GP*

XGB

gplearn*

Figure 11: Pareto front of benchmarked algorithms

101 102

Dataset Nfeatures

10−2

10−1

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
FEAT S-Split
FEAT D-Split
FEAT(e-lex)

Figure 12: Training time versus number of features in the
dataset

One interesting result is that S-Split uses more tests than D-Split
but still has a faster execution. We hypothesize that this is because
D-Split needs to calculate the threshold for each test case until one
parent is selected, while S-Split needs to calculate it only once.

7 CONCLUSIONS

In this paper, we proposed a novel way of estimating the thresh-
old to stay in the pool for 𝜖-lexicase selection, an adaptation to
improve lexicase for regression problems. We then evaluated these
new threshold criteria with 6 small problems and 122 regression

102 103 104

Dataset Nsamples Train

10−2

10−1

100

101

Tr
ai

ni
ng

 T
im

e
(h

r)

algorithm
FEAT S-Split
FEAT D-Split
FEAT(e-lex)

Figure 13: Training time versus number of samples in the
training partition of the dataset

problems, comparing the results with other 21 algorithms. We
achieve competitive results with the previous version of 𝜖-lexicase
while showing improvements in real-world datasets. The perfor-
mance in synthetic problems was preserved. The downside of our
implementation is that it requires more test cases to run, leading to
higher execution times. Nevertheless, using additional resources
helps achieve better results, as shown by the final performance
comparisons.

In future work, we plan to study how these new criteria change
the distribution probability of individuals in the population. We will
also investigate how down-sampling can decrease the number of
test cases used. Finally, these criteria can also be implemented into
other symbolic regression algorithms, and we can assess whether
they can be improved with the minimum variance split criteria.

ACKNOWLEDGMENTS
W.G.L. was supported by National Institutes of Health (NIH) grant
R00-LM012926, and Patient Centered Outcomes Research Insti-
tute (PCORI) ME-2020C1D-19393. F.O.F. is supported by Fundação
de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant
2021/12706-1, and Conselho Nacional de Desenvolvimento Cientí-
fico e Tecnológico (CNPq) grant 301596/2022-0. G.S.I.A. is supported
by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) finance Code 001 and grant 88887.802848/2023-00.

REFERENCES
[1] Ryan Boldi, Martin Briesch, Dominik Sobania, Alexander Lalejini, Thomas

Helmuth, Franz Rothlauf, Charles Ofria, and Lee Spector. 2024. Informed
Down-Sampled Lexicase Selection: Identifying productive training cases for
efficient problem solving. Evolutionary computation (01 2024), 1–32. https:
//doi.org/10.1162/evco_a_00346

[2] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. 1984. Classification and
Regression Trees. Taylor & Francis. https://books.google.com.br/books?id=JwQx-
WOmSyQC

[3] Anne Brindle. 1980. Genetic algorithms for function optimization. (1980).
[4] Fabrício Olivetti de França. 2023. Transformation-Interaction-Rational repre-

sentation for Symbolic Regression: a detailed analysis of SRBench results. ACM
Transactions on Evolutionary Learning (2023).

https://doi.org/10.1162/evco_a_00346
https://doi.org/10.1162/evco_a_00346
https://books.google.com.br/books?id=JwQx-WOmSyQC
https://books.google.com.br/books?id=JwQx-WOmSyQC

Minimum variance threshold for 𝜖-lexicase selection

[5] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182–197. https://doi.org/10.1109/4235.996017

[6] Li Ding, Edward Pantridge, and Lee Spector. 2023. Probabilistic Lexicase Selection.
In Proceedings of the Genetic and Evolutionary Computation Conference. 1073–1081.
https://doi.org/10.1145/3583131.3590375 arXiv:2305.11681 [cs].

[7] Jerome H. Friedman. 2001. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics 29, 5 (2001), 1189–1232. http://www.jstor.org/
stable/2699986

[8] Alina Geiger, Dominik Sobania, and Franz Rothlauf. 2023. Down-Sampled
Epsilon-Lexicase Selection for Real-World Symbolic Regression Problems. 1109–
1117. https://doi.org/10.1145/3583131.3590400

[9] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2016. The Im-
pact of Hyperselection on Lexicase Selection. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016 (Denver, Colorado, USA) (GECCO
’16). Association for Computing Machinery, New York, NY, USA, 717–724.
https://doi.org/10.1145/2908812.2908851

[10] Jose Guadalupe Hernandez, Alexander Lalejini, Emily Dolson, and Charles Ofria.
2019. Random subsampling improves performance in lexicase selection. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Prague, Czech Republic) (GECCO ’19). Association for Computing Machinery,
New York, NY, USA, 2028–2031. https://doi.org/10.1145/3319619.3326900

[11] Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge Regression: Biased
Estimation for Nonorthogonal Problems. Technometrics 12, 1 (1970), 55–67.
http://www.jstor.org/stable/1267351

[12] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data Mining and Knowledge Discovery 33, 4 (2019), 917–963.

[13] Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affen-
zeller. 2019. Parameter identification for symbolic regression using nonlinear
least squares. Genetic Programming and Evolvable Machines 21, 3 (Dec. 2019),
471–501. https://doi.org/10.1007/s10710-019-09371-3

[14] John R Koza. 1992. Genetic Programming: On the Means of Programming Com-
puters by Means of Natural Selection. MIT Press.

[15] John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4 (1994), 87–112.

[16] Krzysztof Krawiec and Una-May O’Reilly. 2014. Behavioral programming: a
broader and more detailed take on semantic GP. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation (Vancouver, BC,
Canada) (GECCO ’14). Association for Computing Machinery, New York, NY,
USA, 935–942. https://doi.org/10.1145/2576768.2598288

[17] William La Cava, Thomas Helmuth, Lee Spector, and Jason H. Moore. 2019.
A Probabilistic and Multi-Objective Analysis of Lexicase Selection and 𝜖-
Lexicase Selection. Evolutionary Computation 27, 3 (09 2019), 377–402.
https://doi.org/10.1162/evco_a_00224 arXiv:https://direct.mit.edu/evco/article-
pdf/27/3/377/1858632/evco_a_00224.pdf

[18] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca,
Marco Virgolin, Ying Jin, Michael Kommenda, and Jason Moore. 2021.
Contemporary Symbolic Regression Methods and their Relative Perfor-
mance. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, J. Vanschoren and S. Yeung (Eds.), Vol. 1. Cur-
ran. https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf

[19] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H.
Moore. 2019. Learning concise representations for regression by evolving net-
works of trees. http://arxiv.org/abs/1807.00981 arXiv:1807.00981 [cs].

[20] William La Cava, Lee Spector, and Kourosh Danai. 2016. Epsilon-Lexicase
Selection for Regression. In Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016. 741–748. https://doi.org/10.1145/2908812.2908898
arXiv:1905.13266 [cs].

[21] William G. La Cava, Paul C. Lee, Imran Ajmal, Xiruo Ding, Priyanka Solanki,
Jordana B. Cohen, Jason H. Moore, and Daniel S. Herman. 2023. A flexible
symbolic regression method for constructing interpretable clinical prediction
models. npj Digital Medicine 6, 1 (June 2023), 107. https://doi.org/10.1038/s41746-
023-00833-8

[22] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193–212.

[23] T. Pham-Gia and T.L. Hung. 2001. The mean and median absolute deviations.
Mathematical and Computer Modelling 34, 7 (2001), 921–936. https://doi.org/10.
1016/S0895-7177(01)00109-1

[24] Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Gold-
berg, Praneel Chakraborty, Natasha L Ray, Daniel Himmelstein, Weixuan Fu, and
Jason H Moore. 2021. PMLB v1.0: an open-source dataset collection for bench-
marking machine learning methods. Bioinformatics 38, 3 (Oct. 2021), 878–880.
https://doi.org/10.1093/bioinformatics/btab727

[25] Lee Spector. 2012. Assessment of problemmodality by differential performance of
lexicase selection in genetic programming: a preliminary report. In Proceedings of
the 14th Annual Conference Companion on Genetic and Evolutionary Computation

(Philadelphia, Pennsylvania, USA) (GECCO ’12). Association for Computing Ma-
chinery, New York, NY, USA, 401–408. https://doi.org/10.1145/2330784.2330846

[26] Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman. 2019. Linear scal-
ing with and within semantic backpropagation-based genetic programming for
symbolic regression. In Proceedings of the Genetic and Evolutionary Computation
Conference (Prague, Czech Republic) (GECCO ’19). Association for Computing
Machinery, New York, NY, USA, 1084–1092. https://doi.org/10.1145/3321707.
3321758

https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/3583131.3590375
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://doi.org/10.1145/3583131.3590400
https://doi.org/10.1145/2908812.2908851
https://doi.org/10.1145/3319619.3326900
http://www.jstor.org/stable/1267351
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1145/2576768.2598288
https://doi.org/10.1162/evco_a_00224
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/27/3/377/1858632/evco_a_00224.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/27/3/377/1858632/evco_a_00224.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
http://arxiv.org/abs/1807.00981
https://doi.org/10.1145/2908812.2908898
https://doi.org/10.1038/s41746-023-00833-8
https://doi.org/10.1038/s41746-023-00833-8
https://doi.org/10.1016/S0895-7177(01)00109-1
https://doi.org/10.1016/S0895-7177(01)00109-1
https://doi.org/10.1093/bioinformatics/btab727
https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1145/3321707.3321758

	Abstract
	1 Introduction
	2 epsilon-lexicase selection
	3 Minimum variance threshold
	4 Feature Engineering Automation Tool
	5 methods
	6 results and discussion
	6.1 Behavior during the run
	6.2 Performance on small datasets
	6.3 Benchmarking with SRBench
	6.4 Scalability

	7 Conclusions
	Acknowledgments
	References

